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Residence time distribution of droplets within discs and doughnuts pulsed
extraction columns via Lagrangian experiments and simulations
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Abstract

This paper is devoted to the study of the transport of single droplets in discs and doughnuts extraction pulsed columns. Video experiments
are carried out on a pilot plant of industrial size (D = 300 mm) in order to extract the values of the plug flow with axial dispersion transport
model parameters (i.e. mean residence time and axial dispersion coefficient). The same kind of results are established thanks to Lagrangian
simulations carried out with the industrial computational fluid dynamics (CFD) code ESTET (EDF, SIMULOG). A detailed study of the
influence of the simulation conditions (expressions of the forces, turbulent dispersion and rebound modelling) is led in order to set the
limits of such an approach. The agreement between experiments and simulations is around 20%. This study leads to the conclusion that
the quality of the results seems to depend strongly on the prediction of the continuous phase flow turbulence.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Solvent extraction is one of the most widely used unit
operations involved in process industry. This mass transfer
operation consists in separating one or several substances
(solute) present in a solid or a liquid phase by contacting it
with another liquid phase in which these substances are pref-
erentially transferred. This unit operation is often processed
in column type contactors within which the two immisci-
ble phases flow countercurrently under the effect of gravity,
one being mechanically dispersed into the other. By way
of example, the contactor considered here is the discs and
doughnuts pulsed column (Fig. 1), mainly used in the nu-
clear wastes treatment. It is composed of successive stages
delimited by discs and doughnuts, alternately arranged along
a cylindrical pipe. The countercurrent flow maintains high
concentration gradients between the phases allowing effi-
cient mass transfer all along the contactor.

This efficiency is clearly related to the hydrodynamics
of both phases. Like in the case of other packed columns,
the major design problem of the such contactors lies in the
choice of the geometrical parameters of the packing and
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of the pulsation conditions, responsible for the hydrody-
namic behaviour. A mechanically imposed pulsation makes
the flow unsteady and turbulent. This pulsation of the flow
in this baffled complex geometry produces shearings and
turbulence which generate breakage of the droplets and, as
a consequence, sufficient interfacial area required for mass
transfer. Furthermore, recirculations created by the packing
ensure a long enough contact time between the phases. Nev-
ertheless, axial mixing takes place within the column and
reduces the efficiency of the process by decreasing solute
concentration gradients and as a consequence the mass trans-
fer rate. For this reason, this axial mixing, affecting both
phases, has to be reduced at its lowest level[1], and has to
be taken into account in the design of industrial columns.
Neglecting these phenomena inevitably leads to an overeval-
uation of the process efficiency.

The usual process engineering approach to represent the
hydrodynamic behaviour of such contactors is based on sim-
plified transport models for both phases, the most common
one appearing to be the plug flow with axial dispersion model
[2]. As far as the contactor considered in this paper is con-
cerned, many experimental studies have been led about the
axial dispersion of the continuous phase[3–5]. These ex-
perimental methods consist in measuring the residence time
distribution (RTD) of an electrolytic (or radioactive) tracer
through several compartments of the column. To charac-
terise the hydrodynamic behaviour of the dispersed phase,
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Nomenclature

a coefficient of the Langevin’s model
A pulsation amplitude (m)
b coefficient of the Langevin’s model
C constant
Cβ ratio of the Lagrangian integral timescale

to the Eulerian integral timescale
Cd drag coefficient
Cm added mass coefficient
dp droplet diameter (m)
dt time step (s)
D diameter (m)
Did axial dispersion coefficient of the

dispersed phase (m2/s)
e random Gaussian velocity (m/s)
Eo Eötvos number (=g�pd2

p/γ)
f pulsation frequency (Hz)
g gravity acceleration (m/s2)
G gravity centre
H disc–doughnut spacing (m)
k turbulent kinetic energy (m2/s2)
L length of the column (m)
Mi ith order moment of the spatial or

temporal distributions,si or mi

Mo Morton number (=(g(�ρ)ρfµ
4
f )/(ρ

2
f γ

3))
n entire number
Pe Peclet number (=vdL/Did)
rc restitution coefficient
rt residence time in a compartment (s)
Rep particle Reynolds number

(=(dp||u(xp(t), t) − vp(t)||)/(vf ))
t time (s)
tc mean residence time in a compartment (s)
tm mean residence time on a lengthL of the

column (s)
T pulsation period (s)
T∗ packing free area
TE Eulerian integral timescale of the fluid (s)
TL Lagrangian integral timescale of the

fluid (s)
T ∗

L Lagrangian integral timescale of the fluid
seen by the droplets (s)

u(xp(t), t) instantaneous velocity of the continuous
phase at the drop position (m/s)

u′(t) turbulent fluid velocity seen by
the droplet (m/s)

Umax permanent component of the bulk
velocity (m/s)

up (t) periodic component of the bulk
velocity (m/s)

vd mean velocity of a monodispersed
population (m/s)

vp(t) instantaneous droplet velocity (m/s)

vpn(t) instantaneous normal velocity before
the rebound (m/s)

vpt(t) instantaneous tangential
velocity before the rebound (m/s)

vp′n(t) instantaneous normal velocity after the
rebound (m/s)

vp′t(t) instantaneous tangential velocity after
the rebound (m/s)

vt free fall velocity of the droplets (m/s)
We Weber number (=ρf v

2
t dp/γ)

xp(t) instantaneous droplet position

Greek letters
γ interfacial tension (N/m)
ε dissipation rate of the turbulent kinetic

energy (m2/s3)
νf kinematic viscosity of the fluid (m2/s)
ρ density (kg/m3)
σ S.D. of the RTD (s)

Subscripts
d dispersed phase
di disc
do doughnut
f fluid
in inlet of the central compartment
out outlet of the central compartment
ref reference value

Fig. 1. The discs and doughnuts extraction column.
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the same kind of technique has been used[5], but also “sin-
gle drop experiments” in which the residence time distri-
butions are obtained by measuring the individual residence
time of a set number of drops. Such kind of studies have been
led on Kühni columns[6,7] but also on discs and dough-
nuts pulsed columns[8]. Both kinds of experiments have
to be repeated for many geometrical and operating condi-
tions in order to correlate the behaviour to these conditions.
Nevertheless, this experimental approach presents two major
disadvantages. On one hand, it is very long, tedious and
sometimes impossible to be performed in the case of very
large columns, and, on the other hand, these kinds of ex-
periments made on pilot plants do not allow to solve the
problem of scale-up.

The aim of this paper is to study the ability of Lagrangian
simulations to replace these “single drop experiments”. The
computational fluid dynamics (CFD) offers an interesting
alternative in the description of the hydrodynamic work-
ing of contactors, such as extraction columns, whatever the
size, the internal design, and the operating conditions. For
single-phase flows in the same column type running un-
der a wide range of operating and geometric conditions,
Aoun Nabli et al.[9,10] have established hydrodynamic be-
haviours and correlation for axial mixing coefficient via CFD
numerical experimentations.

Lagrangian simulations of single drop trajectories can be
considered as the numerical counterpart of the single drop
experiments. However, modelling of the forces acting on
the drops, turbulent dispersion, droplet–wall interaction, and
simulation strategy still remain key problems of this kind
of approach. This paper is focused on two main objectives:
the first one is to establish a simulation strategy correspond-
ing to the “single drop experiments”, and the second one is
to evaluate the accuracy of these numerical experiments in
relation to industrial design and to point out the main im-
provements that have to be introduced in the different mod-
elling levels. For given geometric and operating conditions,
simulations results are compared with experimental ones in
term of residence time distribution and plug flow with axial
dispersion transport model parameters (i.e. mean residence
time in a compartment and axial dispersion coefficient).

In the first part of the paper, the experimental set-up and
the metrology are described. Secondly, details are given
about modelling and numerical treatments. In this part, the
strategy and tools of simulation are explained. The last part
is dedicated to the aforementioned comparisons for different
simulation conditions.

2. Experiments

2.1. The discs and doughnuts column

The column used to perform the experiments (Fig. 1) is
composed of a 2 m high vertical 0.288 m in diameter cylin-
drical Perspex pipe. It contains a packing constituted by

3 × 10−3 m thick stainless steel discs and doughnuts alter-
nately arranged conferring a 23.5% open-free area to the de-
vice. The packing elements are maintained by 4.5×10−2 m
length and 1× 10−3 m diameter stainless steel braces (H =
0.0048 m), giving to the ensemble a spatial periodicity. A
0.288 m diameter pipe including three openings of 1.25×
10−1 m and separated by 120◦ forms the foot of the col-
umn. This pipe is coupled to the pulsation system thanks
to a cylindrical jacket. The pulsation system is of mechan-
ical type with counter pressure. It is composed of a pis-
ton driven by a crank-arm system with variable lever-arm
length, dragged by a direct current system that allows vari-
able amplitude and frequency until 4× 10−2 m and 3 Hz,
respectively. The chosen operating conditions correspond to
a 1.65× 102 m amplitudeA and to a frequencyf of 1 Hz.
The flow generated is purely oscillating following (1):

up(t) = πAfcos(2πft) (1)

2.2. Measurement system

The residence time distribution of the droplets is estab-
lished by following the trajectories of 2.5 × 10−3 m in di-
ameter calibrated drops thanks to a video system on two
stages of the column (Fig. 2). Toluene drops coloured by red
Cerol-Soudan IV are injected in a water continuous phase
thanks to a pushing syringe pump HARVARD apparatus
type 44 and a stainless steel capillary penetrating into the
column. At the end of the capillary, a cylindrical Perspex
pipe has been placed to avoid a too early detaching of the
droplets due to the pulsation of the continuous flow. The sy-
ringe has a diameter of 3.24×10−3 m (syringe KOELHN of
500×10−9 m3). Droplets are injected five compartments un-
der the visualisation section, itself located in the middle part
of the column and surrounded by a square Perspex box filled
with water in order to avoid optical distortions. Two 500 W
halogeneous spotlights enlighten this part and a white cover
has been placed behind the column to obtain an uniform

Fig. 2. The experimental set-up.
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light repartition. Drop trajectories crossing three stages of
the column are filmed thanks to a FAIRCHILD CCD video
camera. Trajectories are recorded by a JVC S-VHS HR5900
MS video tape recorder linked to an electronic video-timer
that allows the inscription of the time on the image at a pre-
cision of 10−2 s.

2.3. Physico-chemical properties of the phases

Experiments are performed at ambient temperature with
a tap-water continuous phase and toluene-red Cerol-Soudan
IV solution droplets. As the density of the drops is less than
the one of the continuous phase, the drops naturally rise
in the column. The density of the dispersed phase is mea-
sured using a hydrometer or density bottle. The results show
that its value is not modified by the presence of the dye
(866.2–866.7 kg/m3 instead of 867 kg/m3 for pure toluene).
On the contrary, the interfacial tension between the two
phases (measured by a hanging drop technique and by the
Wilhelmy method) shows appreciable decrease with an in-
crease of the Cerol-Soudan IV concentration from 35.4 ×
10−3 N/m for pure toluene to 3.4× 10−3 N/m in the case of
10−3 kg/kg toluene dye concentration. Thus, in order to en-
sure a sufficient coloration of the drops and an interfacial ten-
sion not too low to avoid the breakage of the droplets, a dye
concentration of 5×10−5 kg for 1 kg of toluene is used. The
corresponding interfacial tension value is 30.5× 10−3 N/m.

2.4. Unfolding of the experiments

One hundred drops are injected one by one at suffi-
ciently high time steps in order not to have two drops in
the camera-field at the same time. After each experiment,
recorded films are viewed at a low speed and the residence
time of each drop in two successive stages is noted. These
data are treated to obtain the residence time distribution on
these elements of the column.

3. Lagrangian simulations

3.1. Hypothesis and modelling

The numerical experiments deal with a two-phase un-
steady (pulsed) turbulent flow via an Euler–Lagrange
method. The pulsed continuous phase flow is simulated as
a function of the time thanks to the resolution of Reynolds
averaged mass and momentum conservation equations.
Turbulence is taken into account thanks to ak–ε model as-
sociated to logarithmic wall laws for this phase. This model
is based on two main hypotheses, which are the isotropy of
turbulence and a local spectral equilibrium. As mentioned
by Aoun Nabli et al.[9], the first condition is not generally
fulfilled in complex flows, such as the one under consider-
ation in this study, but the good results of a great number
of simulations show that only satisfaction at a small scale

of this isotropy hypothesis seems to be necessary. The sec-
ond hypothesis has been verified by spectral analysis of
laser Doppler velocimetry measurements of flow velocities
in the same contactor[4], revealing a−5/3 slope for the
inertial range of the spectrum (5–100 Hz) in the case of an
oscillation frequency around 1 Hz.

As far as the dispersed phase is concerned, the Lagrangian
approach adopted in this work consists in simulating the
behaviour of a cloud of droplets, following individually a
great number of them. Generally, the movements of the two
phases are strongly coupled, drops are agitated and carried
by the surrounding fluid meanwhile their presence also in-
fluence and modify the continuous phase flow. This influ-
ence is directly linked to the volume fraction of the drops. At
very low volume fractions, the influence of the drops on the
carrier phase can be neglected (one way coupling hypothe-
sis). That is obviously the case for “single drop numerical
experiments”. The drops considered in this study are also
supposed to be spherical and rigid due to the relatively high
value of the interfacial tension and to the drop size.

Each drop trajectory is obtained solving the fundamental
law of dynamics taking into account the (a) buoyancy, (b)
pressure gradient, (c) drag, (d) added mass forces induced by
the unsteady Eulerian-simulated continuous flow as follows:

πd3
p

6
ρd

dvp(t)

dt

= πd3
p

6
(ρd − ρf )g︸ ︷︷ ︸

a

+ ρf
πd3

p

6

Du(xp(t), t)

Dt︸ ︷︷ ︸
b

+ 1

2

πd2
p

4
ρfCd||u(xp(t), t) − vp(t)||(u(xp(t), t) − vp(t))︸ ︷︷ ︸

c

+ πd3
p

6
Cmρf

(
Du(xp(t), t)

Dt
− dvp(t)

dt

)
︸ ︷︷ ︸

d

(2)

Many expressions have been proposed for the drag coeffi-
cientCd [11]: the physico-chemical properties of the phases,
the kind of flow and the inclusion type are parameters that
have to be taken into account in the choice of theCd cor-
relation. Schiller and Nauman’s (3.a) and Newton’s (3.b)
ones have been chosen in this study because they seem to
be the most reliable in the case of solid particles[11] and
undeformable drops[12].

Cd = 24

Rep
(1 + 0.15Re0.687

p ), Rep ≤ 1000 (3.a)

Cd = 0.44, Rep > 1000 (3.b)

Nevertheless, for liquid–liquid systems, other kinds of cor-
relations taking into account the drop deformation have been
established thanks to the study of the drop movement in a
stagnant unbounded liquid. In this case, the free fall velocity
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of the drops is linked to the drag coefficient through the
classical relation (4):

vt(dp) =
(

4

3
g
�ρ

ρf
dp

)0.5

C−0.5
d (4)

Cd expressions are derived from correlations available for
the free fall velocity[13]. For the system of phases consid-
ered here, Stokes’ (5.a) and Vignes’ (5.b) laws are as fol-
lows:

Cd = 24

Rep
, Rep < 1 (5.a)

Cd = 5.6Rep
1

We
Mo1/3

(
1 − Eo

6

)
, 1 < Rep ≤ 1000

(5.b)

In order to verify if Schiller and Nauman’s and Newton’s
laws can be used, a comparison has been made with theCd
values issued from Vignes’ law in the range of observed
particle Reynolds numbers in the flow under consideration.
Fig. 3illustrates the evolution of the particle Reynolds num-
ber for a drop crossing the simulation domain. The operating
conditions are the following ones:A = 1.65×10−2 m, f =
1 Hz,dp = 2.5× 10−3 m. Rep ranges from 20 to 800.Fig. 4
shows that Schiller and Nauman’s law does not differ from
Vignes’ one in this particle Reynolds numbers range. More-
over, Schiller and Nauman’s law ensures continuity with
Newton’s one for particle Reynolds numbers higher than
1000, avoiding numerical jumps in the Lagrangian treatment.

The value of the added mass coefficientCm is taken as
0.5 [14]. Taking into account this force in the trajectories
equation may be a subject of controversy in so far as the
0.5 Cm value has only been established in the case of solid
spheres and spherical bubbles[15]. Furthermore, the turbu-
lent dispersion model used in this work generates continu-
ous but non-differentiable velocities seen by the drops, what

Fig. 3. Evolution of the Reynolds number of the particle as a function of
the dimensionless time.

Fig. 4. Evolution of the drag coefficient as a function of the Reynolds
number of the particle.

induces approximations in the force balance. As a conse-
quence, tests have been carried out in order to quantify the
influence of the added mass force.

The effect of the continuous phase flow turbulence on the
drops (i.e. the turbulent dispersion) is modelled thanks to a
simplified Langevin’s equation[16]. This kind of model is
based on the hypothesis that both longitudinal and transver-
sal Eulerian spatial integral scales are equal and that the
probability distribution function of the fluctuating velocities
follows a Gaussian law. The turbulent velocity seen by a
drop at a given time step is obtained from the one seen at
the previous time step, and from the local turbulence level
like the next equations express:

u′(t = (n + 1)dt) = a u′(t = (n)dt) + be (6)

with

a = exp

(−dt

T ∗
L

)
, b =

√
1 − a2,

e = random Gaussian variable,

T ∗
L = TL

1 + Cβ(||u(xp(t), t − vp(t))||)/(
√

2k/3)
, Cβ = TL

TE

(7)

Resorting to this kind of model still sets some questions
principally induced by the turbulent scale value prediction,
directly linked to the local values ofk and ε. In the next
part of this paper, answers are proposed thanks to sensitivity
tests.

3.2. Calculation domain

The experimental works of Oh[4] and Angelov et al.
[17] on this contactor show that the mean flow is two-
dimensional and axisymmetrical, but that the turbulence is
three-dimensional. The packing shows a spatial periodicity.
Each compartment represents a spatial pattern, constituted
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Fig. 5. Simulation domain.

of two stages, each delimited by successive disc–doughnut
or doughnut–disc. Considering these characteristics, contin-
uous flow calculations are performed in two dimensions be-
tween the axis and the wall of the column using cylindrical
co-ordinates (r, z) on three compartments, which is a suffi-
cient number to establish the flow[18]. The structured and
irregular mesh used to discretize the domain (Fig. 5) is com-
posed of:

• thirty-three radial lines, 6 of which are in the free area of
the disc and 14 in the free-area of the doughnut;

• fourteen axial lines separate two baffles and two represent
their thickness.

As far as the Lagrangian step is concerned, the particle
transport is three-dimensionally calculated. The mean ve-
locity of the surrounding fluid has no tangential component;
nevertheless, the instantaneous velocities taking part in the
force balance have a non-zero tangential component, what
induces particle displacement in this direction. The simu-
lated trajectories take into account these displacements, but
the simulation plane follows the tangential location of the
drops while their tangential velocity is kept.

Boundary conditions apply only to the continuous phase
and are similar to the ones used by Aoun Nabli et al.
[9].

3.3. Calculation strategy

The calculation strategy is composed of three steps. In a
first time, the permanent flow corresponding to the maximal
amplitude of pulsation is simulated until the establishment
of the flow. Secondly, the inlet flow rate is pulsed until reach-
ing a locally periodic flow. Once this continuous phase flow
established, the study of the dispersed phase can start. Drops

are injected in the downward compartment on 16 points of
the mesh around the doughnut. The initial velocity is the one
of the fluid and this injection starts just when the flow starts
its upward acceleration phase. Once the drops enter the last
stage they are re-positioned two compartments downward
with the same radial position and the same velocity. This
method is used in order to simulate the working of a high
column with a great number of compartments, what would
consume too much time and memory. In order to fit the ex-
perimental work, where droplets enter or exit naturally the
measurement compartment because they have been injected
far from it, the height of the column is replaced in the sim-
ulation work by several crossings of the simulation domain.
This technique can be used because of the axial spatial pe-
riodicity of the column.

Calculations are performed until the establishment of the
dispersed phase flow, what means that the entry or exit of
the droplets in the compartment is not influenced by the in-
jection conditions. This establishment is considered to be
reached when the spatial periodicity of the radial entrance
distributions in two successive compartments and the tem-
poral periodicity of the entrance distributions along a period
are completed. For each crossing of the 2400 drops in the
central compartment (the evaluation of the influence of the
drop number has shown that 2400 drops is sufficient), the
aforementioned distributions are plotted and the three first
momentsMi (Eq. (8)) of each distribution are calculated and
compared thanks to an “error” function defined as follows:

error= |Mi
in − Mi

out|
|Mi

in| (8)

whereMi
in is the ith order moment of the radial position

distribution at the entry of the compartment (respectively of
the entrance time distribution) andMi

out is the same moment
of the ith order at the exit of the compartment.

Fig. 6a and bshow the evolution of these errors as a
function of the number of crossings. A global decrease is
noticeable and both errors do not exceed 4% after the third
crossing in the case under consideration.

Fig. 7a and bshow the resulting radial and temporal distri-
butions, respectively. In the first graph, preferential entrance
or exit radial positions at the limit of the disc (60% in num-
ber) can be noticed. In the second graph, which deals with
the temporal analysis, namely 80% of the drops enter or
exit the compartment when the continuous flow is ascending
(−0.25T to 0.75T) and a large part of them (∼54%) during
its upward acceleration phase (−0.25T to T). These results
are in good agreement with those experimentally obtained
by Laulan[8] and with the observations on the experimental
plant.

When the establishment of the drop flow is confirmed, the
residence time distributions are stored on each stage. These
distributions are then used to calculate the parameters of the
plug flow with axial dispersion transport model.
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Fig. 6. Comparison between the three first moments of the: (a) radial
inlet and outlet distributions; (b) temporal inlet and outlet distributions.

3.4. Evaluation of the plug flow with axial dispersion
transport model parameters

Given the residence time distributions in two successive
stages, the RTD in a greater number of elements of the
column are rebuilt thanks to a convolution algorithm[8].

Fig. 7. (a) Radial inlet and outlet distributions. (b) Temporal inlet and
outlet distributions.

For each resulting distribution onk stages, the mean value
and the variance of the distribution are calculated. Thanks
to these data, the Peclet number is evaluated, considering
that thek stages form an open area for dispersion both at
the entrance and exit by the relation (9)[19]:

σ2

t2m
= 2

Pe
+ 8

Pe2
(9)

The axial dispersion coefficient is then calculated following
(10), whereL is the length of thek stages, andvd the mean
velocity of the dispersed phase:

Pe= vdL

Did
(10)

This convolution procedure is carried out until reaching a
constant value of the axial dispersion coefficient and of the
mean velocity of the dispersed phase, i.e. until the considered
column length is sufficient to represent the behaviour of
the dispersed phase by a plug flow with axial dispersion
one-dimensional transport model. In fact, the RTD obtained
on each stage show two peaks (Figs. 9, 10 and 12), what
can not be represented by a plug flow with axial dispersion.
Nevertheless, this model is suitable for a more important
length of the column, where the RTD curves exhibit only one
peak. In this study, the stabilisation occurs after 32 stages.

The next part shows the results obtained by Lagrangian
simulations in terms of droplet trajectories and residence
time distributions. A thorough study is then led on the in-
fluence of the simulation conditions via comparisons of the
RTD and transport model parameters with experimental val-
ues.

4. Simulation results and comparison with
experimental data

4.1. Droplet trajectories

Fig. 8a and bboth show drop trajectories obtained by the
way of simulation. The different marks represent each quar-
ter of period as mentioned on the bottom ofFig. 8a. These
trajectories have been chosen because they are representa-
tive of all the behaviours encountered in the simulations.
The droplets enter or exit each stage preferentially near the
edge of the packing elements (disc or doughnut) just when
the flowing velocity is ascending. This fact can be related
to the observations led for the whole number of drops in
Fig. 7a and b. For example, inFig. 8a, it can be noticed
that the drop penetrates in each stage during these lapses
of time. This preferential tendency is especially noticeable
during the ascending acceleration phase of the flowing ve-
locity between 0.75T and T and principally around 0.75T.
Actually, between 0.5T and 0.75T, the flow in the column is
negative; the droplets are stopped at the edge of the packing
elements (Fig. 8bnear the disc at the bottom of the central
compartment). When the flow becomes zero around 0.75T,
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Fig. 8. (a and b) Examples of a particle trajectory.

the velocities are positive at the edge of the discs and the
doughnuts: the droplets, whose axial displacement has been
stopped by the packing, are carried by the continuous flow
and exit the stage. When they enter a stage during the first
quarter of the period, the droplets are generally recaptured
by the downward flow during the second quarter of the pe-
riod (Fig. 8bnear the doughnut of the downward compart-
ment). The droplets never come close to the axis of the col-
umn because this area corresponds to large dead zone of the
continuous flow. The behaviour of the continuous phase is
not presented here but can be found in[9]. The last feature
that can be observed is a strong wall–droplet interaction. In
fact, the residence time of the droplets is partially linked to
the time they spend under the packing elements (this inter-

action time may represent 10–50% of the residence time in a
stage). This interaction is more important with the discs than
with the doughnuts. This phenomenon may be explained by
the fact that the recirculations generated at the doughnut
level are bigger than the ones generated at the disc level. So,
when the droplets pass round the recirculations, they arrive
farther from the disc edge than from the doughnut one.

4.2. Residence time distribution in each stage

The next result presented concerns the residence time
distributions in each stage for a drop diameter of 2.5 ×
10−3 m. The experimental and numerical distributions ap-
pear inFig. 9 (note that the stage 1 corresponds to a stage



N. Bardin-Monnier et al. / Chemical Engineering Journal 94 (2003) 241–254 249

Fig. 9. Experimental and numerical residence time distributions on two stages of the column.

of type disc–doughnut and the stage 2 to a stage of type
doughnut–disc). In this figure, the radial axis represents the
residence time expressed as a function of the period and the
axial one the percentage of droplets whose residence time
is equal to each class of time. The analysis of this figure
leads the following remarks. First, for each type of stage,
the numerical RTD are multi-modal with peaks appearing
around residence times equal to entire number of periods:
the same tendency can be found for the experimental ones.
This multi-modal shape can be explained by the fact that
the droplets enter or exit the central compartment when the
flowing velocity is ascendant, like aforementioned. As far
as the numerical RTD are concerned, it can be noticed that
a gap is present between the RTD in stage 1 and stage 2.
For the stage 1, the major peak is situated aroundT, while
for the stage 2, this one is displaced around 2T. This gap
may be due to the more important interaction of the droplets
with the disc than with the doughnut as shown in the pre-
vious section. This gap does not appear in the experimental
results: for each stage, the major peaks are situated around
T. Nevertheless, for the experimental RTD the peak at 2T
is more important for the stage 2 than for the stage 1. Sec-
ondly, the numerical RTD reveals that the droplet proportion
whose residence time is more than four periods is more im-
portant in the stage 2 than in the stage 1 (6 for 4% in the
stage 1). This propensity to spend more time in the stage 2,
which is also found again experimentally (3.5 for 2%), can
be explained by the same reasons as the previous ones. Both
these behaviours induce a residence time more important in
the stage 2 than in the stage 1 (the mean values for the whole
population are 1.9 5 and 2.16 5 numerically). The experi-
mental results for these operating conditions show the same
tendency (1.54 s for the stage 1 and 1.92 s for the stage 2).
Finally, for each stage, a gap between the experimental and

numerical RTD can be noticed: for example, in the case of
the stage 2, the first RTD starts at 0.9T while for the sec-
ond one, the droplets exit the stage as soon as the second
quarter of period. Furthermore, the drop proportion staying
in one stage more than four periods is more important for
the simulation results.

To sum-up, the comparison between experimental and
numerical RTD has shown that they both have the same
multi-modal shape and that a gap is present between them.
But, despite this gap, the results in terms of plug flow
with axial dispersion model parameters show an agreement
around 20% for all the parameters (mean residence time in
a compartment and axial dispersion coefficient), as it is un-
derlined byTable 1.

As a conclusion of this paragraph, it is obvious that La-
grangian simulations of droplet trajectories inside contac-
tors such as discs and doughnuts extraction columns are
source of primordial information about the hydrodynamic
behaviour of the droplets. Even if a gap is present, the com-
parison in terms of RTD between experimental and numer-
ical results is quite satisfying with a design objective, for
which no other tools are able to give this kind of infor-
mation at an industrial scale. But it is clear that modelling
improvements still have to be performed for more accurate
results. In order to lighten the main modelling points on
which these improvements have to be made, sensitivity tests

Table 1
Comparison between the experimental and numerical mean residence time
and axial dispersion coefficient

Experiment Simulation

Mean residence time (s) 3.35 3.92
Axial dispersion coefficient (×10−4 m2/s) 2.3 1.8
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at different modelling levels are presented in the following
section.

4.3. Influence of the simulation conditions

This paragraph intends to show the results obtained with
different simulation conditions. This study is led as follow-
ing: for each parameter of simulation the discussion is made
about the RTD: comparisons are made between the exper-
imental RTD, the “standard” RTD and the ones where the
simulation conditions have been changed. Based on these
RTD, a comparison is also made on the mean residence time
and on the axial dispersion coefficient.

4.3.1. Influence of the added mass force
Taking into account the added mass force in the solv-

ing of the trajectory equation requires the knowledge of
the instantaneous velocity field “seen” by the droplet. The
turbulent component of the velocity “seen” is calculated
thanks to a Langevin’s model, which generates continuous
but non-differentiable velocities. As a consequence, using
this kind of model induces a simplification of the added mass
force expression, where the mean component of the veloc-
ity is only taken into account. Moreover, the 0.5 value for
the added mass coefficient has been established only in the
cases of solid spheres and spherical bubbles. Simulations
have then been led without taking into account this force in
order to evaluate its impact on the droplet transport.

Fig. 10represents the RTD obtained via experiments and
via simulations (standard simulation with the added mass
force and modified one without it). The multi-modal shape
of the RTD is unchanged when the added mass force is
not taken into account. Nevertheless, peaks around resi-

Fig. 10. Influence of the added mass force on the RTD and plug flow with axial dispersion model parameters.

dence times around one or two periods are clearly more pro-
nounced. The RTD tends to be narrower around these two
peaks. It can also be noticed that the drop proportion that
stay in the stage during one pulsation period is more impor-
tant than in the standard simulation, what seems to be more
in agreement with the experimental results. Moreover, the
drop percentage whose residence time is more than three pe-
riods is far less important (4%) when the added mass force
is not considered in the simulations compared to the experi-
mental RTD and the one issued from the standard simulation
(12 and 14%, respectively). Results in terms of mean resi-
dence time and axial dispersion coefficient are also given in
Fig. 10. Without the added mass force, the mean residence
time is lessened, the gap with regards to the experimental
value is reduced. The higher value of the residence time
when taking into account the added mass force may be due
to the fact that this inertia force tends to impede any relative
“droplet carrier fluid” acceleration; in fact, it tends to reduce
the droplet slip velocity. As far as the axial dispersion coef-
ficient is concerned, like the RTD narrow shape allowed to
foresee,Did is quite lower than in the standard simulation.
This added mass force impact on the axial dispersion can be
explained by coming back to the physical sense of this force.
When the droplet has a relative acceleration with regards to
the carrier flow, this force tends to slow the drop, while the
impact is opposite when the carrier flow acceleration is su-
perior to the droplet one. These acceleration situations are
induced by the pulsation and associated gradients in the con-
tinuous phase flow due to the pulsation and by the fact that
the droplets cross high velocity gradients. On the contrary,
turbulence does not take part here because only the mean
component of the fluid velocity seen by the droplet is taken
into account in the added mass force expression (Eq. (2)).



N. Bardin-Monnier et al. / Chemical Engineering Journal 94 (2003) 241–254 251

As a consequence, the omission of this force in the trajec-
tory equation leads to the decrease of the droplet velocity
variations. At the whole droplet population level, this fact
induces a decrease of the axial dispersion.

As a conclusion about the influence of the added mass
force in the droplet trajectory equation, it can be noticed
that taking this force into account leads to an increase of the
droplet velocity distribution and allows to reduce the gap
between experiments and simulation. Nevertheless, the op-
posite conclusion could be made from residence time point
of view. Explanations have been put to the fore but the ex-
perimental uncertainties remain key problems for a suitable
comparison.

4.3.2. Rebound modelling
As it has been observed on the droplet trajectories (Fig. 8a

and b), the droplet–wall interactions play an important role
on the behaviour of the dispersed phase. These interactions
are managed by a rebound type treatment, acting on the nor-
mal velocity of the droplet arriving on the wall, via a resti-
tution coefficientrc. If for gas solid systems the value of
this restitution coefficient is certainly close to 1, in the case
of droplets carried by a liquidrc can not be fixed on the
basis of actual knowledge. As a consequence, sensitivity of
the RTD to changes ofrc values is reported here. Threerc
values are tested: a case corresponding to an elastic rebound
(rc = 1), a case without rebound, drops only slipping along
the walls after contact (rc = 0), and an intermediate situ-
ation (rc = 0.5). In Fig. 11, the three simulated situations
are presented: after the first contact (Fig. 11a), the drop is
relocated at a distance from the wall equal to its radius, its
tangential velocityvpt is not modified, but its normal veloc-
ity vpn changes to−rc vpn (Fig. 11b–dfor rc = 1, 0.5 and
0, respectively). The resulting RTD are presented inFig. 12.
First, it can be noticed that the restitution coefficient de-
crease does not modify the multi-modal shape of the RTD.

Fig. 11. Rebound modelling.

Nevertheless, for restitution coefficients equal to 0.5 or 0, the
major peak is located around residence times equal to two
pulsation periods, while for the standard numerical (rc = 1),
and experimental RTD this peak is located around one pul-
sation period. Moreover, the droplet proportion that stay in
the stage during more than four pulsation periods increases
with the decrease of the restitution coefficient (it reaches 9%
for a zero restitution coefficient). As a conclusion, the de-
crease of the restitution coefficient leads to RTD which do
not tend to better fit the experimental results. As far as the
transport model parameters are concerned,Fig. 12 under-
lines that the decrease of the restitution coefficient inevitably
leads to an increase of the mean residence time, what is not
surprising: the lower the restitution coefficient is, the more
the droplets are sticked on the walls, and as a consequence
are not recaptured by the continuous flow and are globally
slowed down. On the contrary, the axial dispersion coeffi-
cient slightly varies with the restitution coefficient, due to
the combining of the slowing down by drop–wall interac-
tions and of the dispersion effects acting on droplets being
recaptured by the flow.

4.3.3. Turbulent dispersion
The behaviour of droplets carried by the continuous liq-

uid phase is clearly managed by the instantaneous velocity
field they see, which is turbulent in the case under considera-
tion here. However, due to the impossibility to solve directly
this instantaneous velocity field, only the mean components
of the fluid velocity are calculated, the turbulence being ac-
counted via its kinetic energyk and its dissipation rateε.
The trajectory (Eq. (2)) and the formulation of the forces
involved are derived from the instantaneous balance of the
forces acting on the drop. In order to solve the trajectory
equation, it is then necessary to rebuild an instantaneous ve-
locity. This aim is completed thanks to a turbulent disper-
sion model (seeSection 3.1). In fact, it has been shown[20]
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Fig. 12. Influence of the restitution coefficient on the RTD and plug flow with axial dispersion model parameters.

that the omission of the turbulent component of the fluid
velocity seen by the droplet leads to deterministic trajecto-
ries, far from the real behaviour of the drops in the column.
The resulting instantaneous velocity obviously depends on
the parameters of the turbulent dispersion model used and
on the local values ofk andε seen by the droplets.

The main sensitive turbulent dispersion model parameter
is the Lagrangian integral timescaleTL. This timescale rep-
resents the time a fluid particle spends in a turbulent struc-
ture and its value conditions the amplitude of the turbulent
fluid velocity component seen by the droplet.TL is related
to the local values ofk andε thanks to the following relation
[21]:

TL = C
k

ε
(11)

The value of the constantC is still a subject of controversy
in the literature[16]. In the standard simulation cases,C is
fixed to 0.2 and has been modified from 0.1 to 0.5.

As far as the prediction of the turbulent variablesk andε
is concerned, it is well known that their prediction in com-
plex flows are still far from being accurate, even if the re-
sulting mean flow is well predicted. In order to drastically
test their influence on the turbulent dispersion, they have
been arbitrarily multiplied or divided by 2.

The results are presented in terms of the transport model
parameters. InFig. 13a and b, which deal with the mean
residence time, it can be noticed that both these simulation
parameters have a great influence. WhenC or k and ε in-
crease, the turbulent component of the fluid velocity seen by
the drop increases, what induces strong droplets trajectory
perturbations and, as a consequence, an increase of the mean
residence time. By shiftingC from 0.1 to 0.5, the mean res-

idence time varies by about 13%, and a change concerning
the localk andε values from 0.5 to 2 their initial values in-
duces a 20% variation. The effects on the axial dispersion
coefficient are stronger (Fig. 14a and b), the variations being

Fig. 13. Influence of the turbulent dispersion model on the mean residence
time: (a) C constant of the model; (b) value of the turbulent dissipation.
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Fig. 14. Influence of the turbulent dispersion model on the axial disper-
sion coefficient: (a)C constant of the model; (b) value of the turbulent
dissipation.

about 46% as a function ofC and about 86% as a function of
k andε. Referring to the experimental mean residence time,
these results should lead to the conclusion that the constant
C and the turbulent variablesk andε are over-evaluated, but
this conclusion does not agree with the results concerning
the axial dispersion coefficient. In fact, for the lower val-
ues of the parameters governing the turbulent velocity seen
by the droplets, the axial dispersion strongly decreases, like
Fig. 14a and bunderline.

5. Discussion

As a conclusion of this paragraph concerning the influence
of the simulation conditions, it is obvious that the knowl-
edge of the expressions of the forces acting on the droplets
remains the basis of an accurate representation of drops be-
haviour by Lagrangian simulations. If the expression of the
added mass force and its treatment in a turbulent case cer-
tainly have to be improved, other forces, neglected here due
to the lack of knowledge in such complex flows, like Basset
force and mainly lift forces, should have to be accounted.
However, the use of quite precise expressions for each force
is only efficient if the behaviour of the continuous phase

is perfectly predicted. It seems that ak–ε model of turbu-
lence associated with wall laws cannot give this required
level of description, mainly in the areas close to the walls.
In fact, a more accurate modelling of the drop–wall inter-
actions cannot be performed without a better description of
the turbulent bursts occurring near these walls, responsible
for the coming back of the droplets in the bulk. The rebound
modelling should be revisited after this better description of
the continuous flow. In our point of view, it should be in-
teresting to try another description of the continuous veloc-
ity field, thanks to a Large Eddy Simulation type approach
for instance. The same kind of Lagrangian study as the one
presented here could then be led in order to quantify if
the trajectory equation and the rebound modelling used are
efficient.

6. Conclusion

This work intends to quantify the ability of Lagrangian
simulations to represent the hydrodynamic behaviour of sin-
gle droplets in a disc and doughnut pulsed column. Mea-
surements of residence time have been performed on a pilot
plant thanks to a video technique in order to set a data bank
for validation. A numerical Lagrangian tracking has been
led on the basis of a simulated continuous phase flow, turbu-
lence being accounted thanks to ak–ε model. The trajectory
equation is solved taking into account the drag, added mass,
pressure gradient and buoyancy forces. The turbulent disper-
sion of the droplets is linked to the carrier flow turbulence
thanks to a modified Langevin’s model. These simulations
have been led with the industrial CFD code ESTET (EDF,
SIMULOG).

Both experimental and numerical results show that the
residence time on one stage exhibits a multi-modal distri-
bution, with main peaks around entire numbers of pulsation
periods, due to the fact that droplets enter in and exit of
the stages when the continuous flow is in the first part of
its ascending phase. The behaviour of the drops is partially
managed by drop–wall interactions which are more sensi-
tive in the doughnuts to discs type stages, leading to more
important residence time in this kind of stages.

The comparisons between experimental and numerical
results in terms of plug flow with axial dispersion model
parameters show an agreement around 20% for all the pa-
rameters (mean residence time in a compartment and axial
dispersion coefficient). Even if a gap remains, this compar-
ison is quite satisfying as a design objective, for which no
other tools are able to give this kind of information at an
industrial scale like the one treated in this work.

As far as the simulation conditions are concerned, the sen-
sitivity tests about the expressions of added mass force, re-
bound modelling and turbulent dispersion modelling which
have been made seem to question the turbulent dispersion
calculation. This calculation depends, on one hand, on the
simulation of the continuous flow turbulence, and on the
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other hand, on the model itself. At first sight, it may be
thought that it should be necessary to come back to the
calculation of the turbulence of the continuous flow before
any change in the Lagrangian equation or in the dispersion
model. Secondly, necessary improvements have to be per-
formed on the modelling of the droplet–wall interaction,
both when the droplets arrive near the walls and when they
collide with them. Here again, a more accurate calculation
of the continuous flow is a key point. It should be interest-
ing to test a new way of simulation of the continuous flow,
which might consists in a Rij transport model or Large Eddy
Simulation approach. On the basis of this simulation, the
same type of Lagrangian tracking should be led. The last
interesting perspective of this work deals with the simula-
tion of industrial applications. In fact, in most of them, the
hold up of the dispersed phase is greater than 15%, and as
a consequence affects the continuous phase flow. The sim-
ulation of the flows in these cases can be performed us-
ing the “two-way coupling” approach that consists in tak-
ing into account the influence of the dispersed phase on the
continuous phase flow. Nevertheless, in our point of view,
the most promising approach lies in the “two fluid model”.
This simulation technique induces that both phases are con-
sidered as fluids which interact with each other. Equations
concerning mean velocity, kinetic energy and turbulence
characterising the whole dispersed phase are solved. Trans-
fer terms between the phases are taken into account by in-
troducing source terms in the continuity and masse balance
equations.
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